Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 12(5): e0094222, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37129504

RESUMEN

Ralstonia pseudosolanacearum is a member of the Ralstonia solanacearum species complex (RSSC), which is composed of three species and diverse subspecific groups. Some strains cause bacterial wilt in Solanum lycopersicum; others are beneficial for their hosts. Herein, we present the complete genome sequence of an RSSC strain, Sw698, beneficial for S. lycopersicum growth.

2.
Microbiol Resour Announc ; 12(6): e0134522, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37125915

RESUMEN

Ralstonia solanacearum is a bacterial wilt pathogen of Solanum lycopersicum. Its pathogenicity is the result of coevolution during continuous interaction with its host plants under given biotic and abiotic environments. To elucidate clues for pathogenicity of our WR-1 strain, its genome sequence was analyzed.

3.
Plants (Basel) ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567213

RESUMEN

Perilla, also termed as purple mint, Chinese basil, or Perilla mint, is a flavoring herb widely used in East Asia. Both crude oil and essential oil are employed for consumption as well as industrial purposes. Fatty acids (FAs) biosynthesis and oil body assemblies in Perilla have been extensively investigated over the last three decades. Recent advances have been made in order to reveal the enzymes involved in the fatty acid biosynthesis in Perilla. Among those fatty acids, alpha-linolenic acid retained the attention of scientists mainly due to its medicinal and nutraceutical properties. Lipids synthesis in Perilla exhibited similarities with Arabidopsis thaliana lipids' pathway. The homologous coding genes for polyunsaturated fatty acid desaturases, transcription factors, and major acyl-related enzymes have been found in Perilla via de novo transcriptome profiling, genome-wide association study, and in silico whole-genome screening. The identified genes covered de novo fatty acid synthesis, acyl-CoA dependent Kennedy pathway, acyl-CoA independent pathway, Triacylglycerols (TAGs) assembly, and acyl editing of phosphatidylcholine. In addition to the enzymes, transcription factors including WRINKLED, FUSCA3, LEAFY COTYLEDON1, and ABSCISIC ACID INSENSITIVE3 have been suggested. Meanwhile, the epigenome aspect impacting the transcriptional regulation of FAs is still unclear and might require more attention from the scientific community. This review mainly outlines the identification of the key gene master players involved in Perilla FAs biosynthesis and TAGs assembly that have been identified in recent years. With the recent advances in genomics resources regarding this orphan crop, we provided an updated overview of the recent contributions into the comprehension of the genetic background of fatty acid biosynthesis. The provided resources can be useful for further usage in oil-bioengineering and the design of alpha-linolenic acid-boosted Perilla genotypes in the future.

4.
Plants (Basel) ; 10(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34579348

RESUMEN

Improving drought stress tolerance of soybean could be an effective way to minimize the yield reduction in the drought prevailing regions. Identification of drought tolerance-related quantitative trait loci (QTLs) is useful to facilitate the development of stress-tolerant varieties. This study aimed to identify the QTLs for drought tolerance in soybean using a recombinant inbred line (RIL) population developed from the cross between a drought-tolerant 'PI416937' and a susceptible 'Cheonsang' cultivar. Phenotyping was done with a weighted drought coefficient derived from the vegetative and reproductive traits. The genetic map was constructed using 2648 polymorphic SNP markers that distributed on 20 chromosomes with a mean genetic distance of 1.36 cM between markers. A total of 10 QTLs with 3.52-4.7 logarithm of odds value accounting for up to 12.9% phenotypic variance were identified on seven chromosomes. Five chromosomes-2, 7, 10, 14, and 20-contained one QTL each, and chromosomes 1 and 19 harbored two and three QTLs, respectively. The chromosomal locations of seven QTLs overlapped or located close to the related QTLs and/or potential candidate genes reported earlier. The QTLs and closely linked markers could be utilized in maker-assisted selection to accelerate the breeding for drought tolerance in soybean.

5.
Molecules ; 26(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440916

RESUMEN

The authors wish to make the following change to their paper [...].

6.
Data Brief ; 34: 106715, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33506081

RESUMEN

Tomato belongs to the Solanaceae family of plants. It is a diploid plant with 12 chromosomes. Previous studies have reported that its genome size is 950 MB with 35,000 protein-coding genes. Micro-Tom Tomato is a miniature dwarf determinate tomato cultivar. It has a small-sized genome, a short lifecycle, and a short seed-setting under fluorescent light. These features are similar to those of Arabidopsis. Consequently, Micro-Tom Tomato is considered as a model cultivar of tomato (Solanum lycopersicum) suitable for research. We sequenced its transcriptomes to identify tissue-specific gene candidate profiles in different plant tissues (petals, sepals, pistils, and stamens) at developmental stages.

7.
Plants (Basel) ; 9(9)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911865

RESUMEN

Pod shattering is an important reproductive process in many wild species. However, pod shattering at the maturing stage can result in severe yield loss. The objectives of this study were to discover quantitative trait loci (QTLs) for pod shattering using two recombinant inbred line (RIL) populations derived from an elite cultivar having pod shattering tolerance, namely "Daewonkong", and to predict novel candidate QTL/genes involved in pod shattering based on their allele patterns. We found several QTLs with more than 10% phenotypic variance explained (PVE) on seven different chromosomes and found a novel candidate QTL on chromosome 16 (qPS-DS16-1) from the allele patterns in the QTL region. Out of the 41 annotated genes in the QTL region, six were found to contain SNP (single-nucleotide polymorphism)/indel variations in the coding sequence of the parents compared to the soybean reference genome. Among the six potential candidate genes, Glyma.16g076600, one of the genes with known function, showed a highly differential expression levels between the tolerant and susceptible parents in the growth stages R3 to R6. Further, Glyma.16g076600 is a homolog of AT4G19230 in Arabidopsis, whose function is related to abscisic acid catabolism. The results provide useful information to understand the genetic mechanism of pod shattering and could be used for improving the efficiency of marker-assisted selection for developing varieties of soybeans tolerant to pod shattering.

8.
Molecules ; 25(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517053

RESUMEN

Papaver nudicaule L. (Iceland poppy) is widely used for ornamental purposes. A previous study demonstrated the alleviation of lipopolysaccharide-induced inflammation mediated by P. nudicaule extract through nuclear factor-kappa B and signal transducer and activator of transcription 3 inactivation. As isoquinoline alkaloids are chemical markers and bioactive constituents of Papaver species, the present study investigated the alkaloid profile of aerial parts of five P. nudicaule cultivars with different flower colors and a P. rhoeas cropped for two years. A combination of liquid chromatography high-resolution mass spectrometry and molecular networking was used to cluster isoquinoline alkaloids in the species and highlight the possible metabolites. Aside from the 12 compounds, including rotundine, muramine, and allocryptopine, identified from Global Natural Products Social library and reported information, 46 structurally related metabolites were quantitatively investigated. Forty-two and 16 compounds were proposed for chemical profiles of P. nudicaule and P. rhoeas, respectively. Some species-specific metabolites showed similar fragmentation patterns. The alkaloid abundance of P. nudicaule differed depending on the flower color, and the possible chemical markers were proposed. These results show that molecular networking-guided dereplication allows investigation of unidentified metabolites. The derived chemical profile may facilitate evaluation of P. nudicaule quality for pharmacological applications.


Asunto(s)
Alcaloides/análisis , Cromatografía Liquida/métodos , Isoquinolinas/análisis , Papaver/química , Papaver/metabolismo , Extractos Vegetales/análisis , Espectrometría de Masas en Tándem/métodos , Estructura Molecular , Papaver/clasificación
9.
Data Brief ; 28: 104955, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31890797

RESUMEN

The plants in the Papaver genus are widely known as Poppies, which is used for ornamental and medicinal purposes, to utilize its plants derived alkaloids and attractive flowers. From this genus, we have sequenced the transcriptomes of four species's (Papaver rhoeas (two cultivar), Papaver nudicaule (five cultivar), Papaver fauriei, and Papaver somniferum) leaves at three developmental stages (i.e., leaf rosette (30 days), elongation and branching (60 days), and blossom and seed formations (90 days)), to elucidate the secondary metabolite biosynthesis gene expression profiles at respective plant stages.

10.
BMC Complement Altern Med ; 19(1): 90, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036001

RESUMEN

BACKGROUND: Papaver nudicaule belongs to the Papaveraceae family, which is planted as an annual herbaceous species generally for ornamental purpose. Papaver rhoeas in the same family has been reported to have various pharmacological activities such as antioxidant and analgesic effects. In contrast, little is known about the pharmacological activity of Papaver nudicaule. In this study, the anti-inflammatory activity of Papaver nudicaule extracts and the action mechanisms were investigated in RAW264.7 macrophage cells. METHODS: To investigate the anti-inflammatory activity of five cultivars of Papaver nudicaule with different flower color, samples were collected from their aerial parts at two growth stages (60 and 90 days) and their ethanol extracts were evaluated in the lipopolysaccharide (LPS)-treated RAW264.7 cells by measuring nitric oxide (NO) and prostaglandin E2 (PGE2) levels. Interleukin 1-beta (IL-1ß), Interleukin-6 (IL-6) and Tumor necrosis factor alpha (TNF-α) production were also analyzed by RT-PCR and multiplex assays. Nuclear Factor-kappa-light-chain-enhancer of activated B cells (NF-κB) and Signal transducer and activator of transcription 3 (STAT3) signaling pathways were examined using western blotting and luciferase reporter assays to reveal the action mechanism of Papaver nudicaule extracts in their anti-inflammatory activity. RESULTS: All of the Papaver nudicaule extracts were effective in reducing the LPS-induced NO, which is an important inflammatory mediator, and the extract of Papaver nudicaule with white flower collected at 90 days (NW90) was selected for further experiments because of the best effect on reducing the LPS-induced NO as well as no toxicity. NW90 lowered the LPS-induced PGE2 level and decreased the LPS-induced Nitric oxide synthase 2 (NOS2) and Cyclooxygenase 2 (COX2). In addition, NW90 reduced the LPS-induced inflammatory cytokines, IL-1ß and IL-6. Furthermore, NW90 inhibited the LPS-induced activation of NF-κB and STAT3. CONCLUSIONS: These results indicate that NW90 may restrain inflammation by inhibiting NF-κB and STAT3, suggesting the potential therapeutic properties of Papaver nudicaule against inflammatory disease.


Asunto(s)
Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Papaver/química , Extractos Vegetales/farmacología , Factor de Transcripción STAT3/metabolismo , Animales , Antiinflamatorios/química , Supervivencia Celular/efectos de los fármacos , Inflamación/inducido químicamente , Lipopolisacáridos/efectos adversos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Extractos Vegetales/química , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
11.
Genes (Basel) ; 9(8)2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061537

RESUMEN

Platycodongrandiflorus (balloon flower) and Codonopsislanceolata (bonnet bellflower) are important herbs used in Asian traditional medicine, and both belong to the botanical family Campanulaceae. In this study, we designed and implemented a de novo DNA sequencing and assembly strategy to map the complete mitochondrial genomes of the first two members of the Campanulaceae using low-coverage Illumina DNA sequencing data. We produced a total of 28.9 Gb of paired-end sequencing data from the genomic DNA of P.grandiflorus (20.9 Gb) and C.lanceolata (8.0 Gb). The assembled mitochondrial genome of P.grandiflorus was found to consist of two circular chromosomes; the master circle contains 56 genes, and the minor circle contains 42 genes. The C.lanceolata mitochondrial genome consists of a single circle harboring 54 genes. Using a comparative genome structure and a pattern of repeated sequences, we show that the P.grandiflorus minor circle resulted from a recombination event involving the direct repeats of the master circle. Our dataset will be useful for comparative genomics and for evolutionary studies, and will facilitate further biological and phylogenetic characterization of species in the Campanulaceae.

12.
J Sep Sci ; 41(12): 2517-2527, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29607619

RESUMEN

Papaver plants can produce diverse bioactive alkaloids. Papaver rhoeas Linnaeus (common poppy or corn poppy) is an annual flowering medicinal plant used for treating cough, sleep disorder, and as a sedative, pain reliever, and food. It contains various powerful alkaloids like rhoeadine, benzylisoquinoline, and proaporphine. To investigate and identify alkaloids in the aerial parts of P. rhoeas, samples were collected at different growth stages and analyzed using liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. A liquid chromatography with mass spectrometry method was developed for the identification and metabolite profiling of alkaloids for P. rhoeas by comparing with Papaver somniferum. Eighteen alkaloids involved in benzylisoquinoline alkaloid biosynthesis were used to optimize the liquid chromatography gradient and mass spectrometry conditions. Fifty-five alkaloids, including protoberberine, benzylisoquinoline, aporphine, benzophenanthridine, and rhoeadine-type alkaloids, were identified authentically or tentatively by liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry in samples taken during various growth stages. Rhoeadine alkaloids were observed only in P. rhoeas samples, and codeine and morphine were tentatively identified in P. somniferum. The liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry method can be a powerful tool for the identification of diverse metabolites in the genus Papaver. These results may help understand the biosynthesis of alkaloids in P. rhoeas and evaluate the quality of this plant for possible medicinal applications.


Asunto(s)
Alcaloides/química , Cromatografía Liquida/métodos , Papaver/química , Extractos Vegetales/química , Espectrometría de Masas en Tándem/métodos , Componentes Aéreos de las Plantas/química , Plantas Medicinales/química
13.
3 Biotech ; 8(2): 115, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29430376

RESUMEN

Anthocyanins are involved in many diverse functions in rice, but their benefits have yet to be clearly demonstrated. Our objective in this study was to identify anthocyanin-related genes in black rice plants. We identified anthocyanin-related genes in black rice plants using a combination of whole-genome resequencing, RNA-sequencing (RNA-seq), microarray experiments, and reverse-transcriptase polymerase chain reaction (RT-PCR). Using multi-layer screening from 30 rice accessions, we identified 172,922 single-nucleotide polymorphisms (SNPs) and 1276 differentially expressed genes that appear to be related to anthocyanin biosynthesis. We identified 18 putative genes from 172,922 SNPs using intensive selective sweeps. The 18 candidate genes identified from SNPs were not significantly correlated with the RNA-seq expression pattern or other well-known anthocyanin biosynthesis/metabolism genes. We also identified nine putative genes from 1276 differentially expressed genes using RNA-seq transcriptome analysis. In addition, we identified four phylogenetic groups from these nine candidate genes and 51 pathway-network genes. Finally, we verified nine anthocyanin-related genes using a newly designed microarray and semi-quantitative RT-PCR. We suggest that these nine identified genes appear to be related to the regulation of anthocyanin biosynthesis and/or metabolism.

14.
Mitochondrial DNA B Resour ; 2(2): 720-721, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-33473959

RESUMEN

Cynanchum wilfordii is a traditional herbal medicine and belongs to the family Apocynaceae. The C. wilfordii mitochondrial genome consists of three circular chromosomes (named chromosomes I-III), the lengths of which are 379,060, 352,767 and 111,332 nucleotides. The mitochondrial genome encodes 58 genes, including 38 protein-coding genes, 17 transfer RNA genes and three ribosomal RNA genes. Of these 58 genes, 37 are located in chromosome I, 35 in chromosome II and 15 in chromosome III. Phylogenetic analysis suggests that among the 14 reported species of Asterids, C. wilfordii is most closely related to Asclepias syriaca.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...